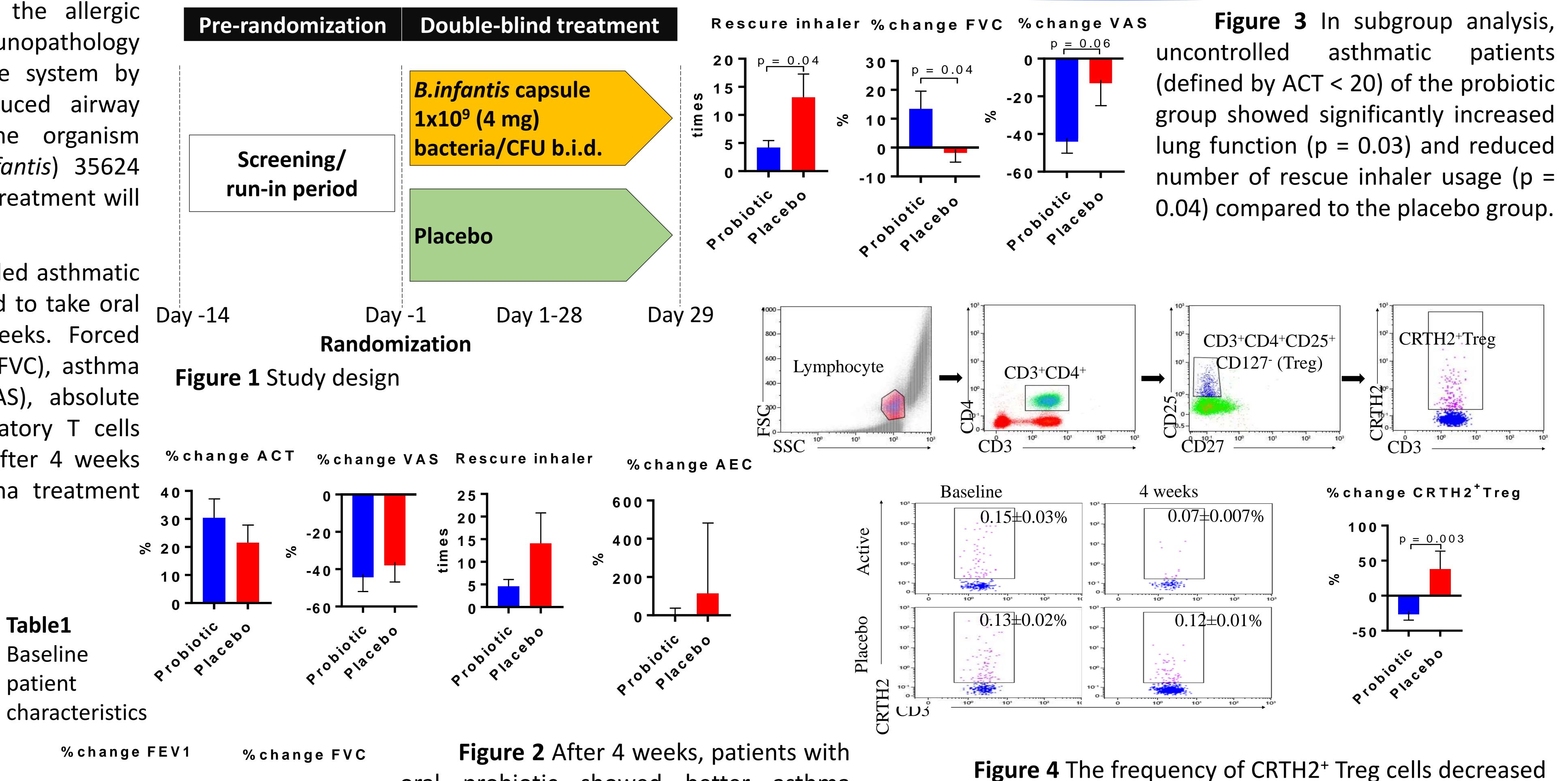
Efficacy of Probiotics Administration in Patients with Uncontrolled Asthma: A Randomized Placebo Controlled Trial

S. Sangkangjanavanich¹, C. Chiewchalermsri¹, A. Sangasapaviliya¹, P. Pradubpongsa¹, W. Mitthamsiri¹, N. Jaisupa², S. Jindarat², S. Buranapraditkun³ T. Boonpiyathad¹ ¹Division of allergy and clinical immunology, Department of Medicine, Phramongkutklao Hospital ²Department of Pharmacology, Phramongkutklao College of Medicine ³Division of Allergy and Clinical Immunology, Department of Medicine, Chulalongkorn University

Background: Regulatory T (Treg) cells suppress the allergic immune response that plays a vital role in the immunopathology of asthma. Probiotics can modulate the immune system by inducing Treg cells and decreasing allergen-induced airway hyperresponsiveness. We hypothesized that the organism Bifidobacterium longum subspecies infantis (B.infantis) 35624 administration together with conventional asthma treatment will improve asthma control in adults.

Methods: Sixty-four partly controlled and uncontrolled asthmatic patients were enrolled in this study and randomized to take oral Day -14 probiotic (B.infantis 35624) or placebo for 4 weeks. Forced expiratory volume 1 (FEV1), forced vital capacity (FVC), asthma control test (ACT) score, visual analog scale (VAS), absolute eosinophil counts (AEC) and dysfunctional regulatory T cells (CRTH2+ Treg) were investigated at baseline and after 4 weeks treatment period. All patients received full asthma treatment 407 without systemic corticosteroid.

Table1


Baseline

% -20 -

-30

patient

	Active	Placebo
	n = 31	n = 29
Sex (Female)	22	15
Age	57.74±15.76	58.37±14.05
ВМІ	25.68±5.42	26.02±5.25
Duration (year)	24.16±16.63	22.03±13.58
History of smoking	4	7
Allergic disease		
AR	24	21
Allergen sensitization		
Mite	22	23
Cockroach	12	11
Inhaled corticosteroid dose		
High	10	6
Moderate	11	19
%FEV1	76.87±20.79	77.72±17.76
%FVC	94.45±16.59	97.27±19.21
%FEV1/FVC	80.83±13.20	78.89±13.89
%PEFR	91.19±27.81	89.86±29.52
Asthma control test score	19.19±3.21	18.58±4.25
Visual Analogue scale	3.58±1.74	3.42±1.2
Absolute Eosinophil (cells/μl)	325.16±215.47	392.17±432.96

in the probiotic group more than the placebo group

Conclusion: B.infantis 35624 administration for 4 weeks

might improve asthma control symptom and lung function,

particularly in partly/uncontrolled asthmatic patients. A

long-term study should be conducted to support the efficacy

of probiotics as an add-on treatment in asthmatic patients.

probiotic showed better asthma

control by increased ACT score and the

mean change of FEV1 more than patients

with placebo. The mean change of AEC

raised in both groups after the treatment

but AEC in the probiotic group was lower

than the placebo group. VAS score

significantly decreased in probiotic groups.